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Introduction 
Much has been published about plane-filling fractals. Well-known plane-filling fractals 
are the Terdragon and the 5-Dragon. These two, as well as many other plane-filling 
fractals, are based on a triangular or square grid. 
 
I asked myself the following questions: 
1. Are there also plane-filling fractals that are not tied to a triangular or square 

grid? 
2. If so, what are the properties of such fractals? 
 
The result of this search can be found in this study. 
 
Before I start with this, I will show the aforementioned Terdragon and the 5-Dragon 
and their dimension. 
 
Then I show the fractals I found, and how I got there. I have taken the liberty of 
naming these new fractals. 
 
 
Nico Bakker 
Hoorn, august 2025 
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Known plane-filling fractals 
Of the well-known plane-filling fractals, I have chosen the Terdragon and the 5-
Dragon to serve as an introduction to fractals and to illustrate calculations to the 
dimension. 

Terdragon 
In the construction of a fractal, the line segment with length 1 (step 0) is replaced by 
a number of contiguous line segments. In the case of the Terdragon, these are three 
line segments with length , such that the middle line segment is vertical. 

   
 step 0 step 1 
 
In step 2, each of the three line segments of step 1 is replaced by three line 
segments in the same way. In the same way, step 3 was created after processing all 
9 line segments of step 2. 

   
 step 2 step 3 
 
Here are steps 6 and 10: 

   
 step 6 step 10 
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The line segments become smaller with each subsequent step. The reduction factor 
for the Terdragon is . The number of line segments triples with each subsequent 
step. 
Because with each subsequent step all line segments are processed in the same 
way as with the transition from step 0 to step 1, step 1 determines what the fractal 
will eventually look like. 
 
A fractal is plane-filling if two conditions are met: 
1. the dimension is 2, and 
2. The line segments do not intersect or overlap. 

Dimension 
The dimension of a fractal of which the line segments in step 1 all have the same 
length can be calculated using the Haussdorf formula: 

 

For the Terdragon, that will be: . Condition 1 is therefore met. 

Cutting and overlapping 
To show that the line segments of a fractal do not intersect or overlap, the line 
segments of step 1 are provided with different colors: 

   
 step 1 step 2 
 
Then in step 2 the colors are maintained. Three times step 1 is then easily 
recognizable. It can also be seen that the fractal only touches itself in the vertices. 
There are no intersecting or overlapping line segments. 
In step 3 a step 2 is recognizable three times, in step 4 three times a step 3, and so 
on. 
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 step 3 step 4 
 

   
 step 5 step 6 
 
It is clear that each step consists of three copies of the previous step, and that the left 
and right copies touch the middle copy only at the vertices. This means that there are 
no intersecting or overlapping line segments. 
 
Both conditions are met and so the Terdragon fractal is plane-filling. 

5-Dragon 
In the 5-Dragon, the line segment with length 1 (step 0) is replaced by five line 
segments with length , in such a way that the line segments are perpendicular 
to each other. The line segments are immediately shown in color; I leave out step 0. 

     
 step 1 step 2 
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 step 3 step 4 
 

     
 step 5 step 6 
 
The reduction factor for the 5-Dragon is . The number of line segments increases 
fivefold with each subsequent step. 

Dimension 
The dimension of a fractal of which the line segments in step 1 all have the same 
length can be calculated using the Haussdorf formula. 

For the 5-Dragon, that will be: . The first condition is therefore 

satisfied. 

Cutting and overlapping 
The pictures in color above show that in each step the five copies of the previous 
step only touch each other at the vertices. This means that there are no intersecting 
or overlapping line segments. 
Both conditions are met and so the 5-Dragon fractal is plane-filling. 
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Duck curve 
To find fractals that are not in a square or triangular grid, there are a number of 
considerations: 
1. The fractal must have symmetry (otherwise it will soon become chaos) 
2. The fractal must have a dimension 2 
3. The line segments do not all have to be the same length 
 
These last two points require a different method to calculate the dimension of a 
fractal, because Haussdorf's formula only applies to fractals whose line segments are 
all the same length. 

Dimension calculation 
Mandelbrot does have a suggestion for this calculation in his book "The Fractal 
Geometry of Nature" (pp. 56 and 57). He reasons as follows: 

a. if the dimension is 1 (i.e. the fractal lies on a straight line), then the sum of the 
line segments is 1 (i.e. the distance between   and ). In formula: 

, or , where  are the lengths of the line 

segments.  
b. in a fractal with  equal line segments with length  is the reduction factor . 

The dimension is then . 

This can be rewritten as: , or . 

By combining the two above arguments, Mandelbrot comes to the suggestion, that 
the dimension of a fractal with line segments of unequal length can be calculated with 

the dimension-generating function , where the dimension  is the 

unique real root of the equation . 

In other words: calculate the dimension  from the equation . 

Mandelbrot has no evidence for this, but in all cases where he has applied it, it is 
correct. 

Example 
Mandelbrot gives an example (page 67), where the first step of the fractal looks like 
the following: 
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The vertices are on , 

,  and . 
The lengths of the line 
segments are respectively. 

,  and . 
 
To get the dimension  we 
solve the equation 

.  

Remember, that  and . 
 

 

This is a cubic equation of . Using Cardano's (or internet's) formula, this provides: 

. 
 
On the right we see step 8 of this 
fractal. The dimension of about 1.5 
may well be correct, because this 
fractal is certainly not plane-filling 
(dimension 2) and also far from a 
straight line (dimension 1). 

Plane-filling fractals 
Calculating the dimension can lead to solving tricky equations. Now, in our search for 
plane-filling fractals, we want the fractal to have a dimension 2. 

We fill in  and so get , as an additional condition for calculating the 

lengths of the line segments. 

Plane-filling fractal with three line segments 
To start, let's move on to the example above of Mandelbrot. We take a fractal that 
starts in the first step and ends with two line segments of equal length and in 
between a line segment of which the middle is on . We do this to give the 
fractal symmetry. 
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We call the length of the middle line segment a and of the other two b. For these 
lengths, the following applies: , ofwel . This means that if 
we take a value for a , we can calculate the value of b , and vice versa. 
We prefer to work with a ratio between a and b and that is why we propose: , 
where the factor k indicates how many times greater a is than b. We then get: 

  

The cosine rule in the upper triangle gives: 

  

  

 

 

 
We now have formulas for a, b, x and y, expressed in k. We are going to experiment 
a bit by filling in a number of values for k. 
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With  we get an already 
known fractal, namely the 
Terdragon, of which we have 
already seen that it is plane-
filling. 
 

     
 step 2 step 3 
 

 
With  we have the same proportions in the lengths of the line segments as in 
Mandelbrot's example. The difference is that we now have a dimension 2. 

 and . 

The coordinates of the vertices are: , ,  and . 
 
An interesting phenomenon presents itself at step 4: the fractal touches itself in two 
vertices. At steps 5 and 6, the fractal touches itself in even more vertices. 
Unfortunately, at step 6 we also see that line segments start to intersect, and that 
becomes even more numerous in subsequent steps. This fractal is therefore not 
plane-filling. 
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 step 1 step 2 
 

     
 step 3 step 4 
 

     
 step 5 step 6 
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With  we get: 

 and 

. 

The coordinates of the vertices are: 
, ,  and 
. 

Step 1 looks like the one on the right. 

     
 step 2 step 3 
 
At step 3 we see for the first time that the fractal touches itself. In the enclosed form 
you can see a duck with some imagination, and point-symmetrically another 
underneath. That is why I call this fractal the Duck curve and the enclosed form the 
Duck figure. 

     
 step 4 step 5 
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 step 6 step 7 
 

     
 step 8 step 9 
 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
 
The Duck figure that arises in step 3 is seen in step 4 in two smaller sizes, namely a 
factor  and  smaller. In step 5 there are three formats, which are a factor ,  
and  smaller than the Duck figure in step 3. With each next step, the number of 
sizes is increased by 1 and the Duck figures become smaller and smaller. 
It is also special that new Duck figures are created at the transitions from one color to 
another. 

Length and direction of line 
segments  
Let's take another look at step 1 
of the Duck curve. The part above 
the x-axis, together with the x-
axis, forms an isosceles triangle. 
So: 

. 
Applying this step 1 therefore 
gives with line segment b: a 
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rotation over an angle  and a reduction by factor . With line segment a , this gives 
a twist over an angle  and a reduction by factor . When the latter is applied 
again, the rotation over an angle  and a reduction by 

factor . This gives a parallel line segment and reduction as with one use 
of line segment b. 
This means that we can write the application of line segment b as a2. Again applying 
line segment a is written as a3, etc. 
This is illustrated in the three steps below. 

     
 step 1 step 2 
 

 
step 3 

 
Each line segment in a step is replaced by three line segments in the next step, 
increasing the exponent of the a by 2, 1 and 2. In step n, the exponents vary from n 
to 2n, where line segments with equal exponents have equal length and are parallel 
to each other. 
Conclusion: across all steps, all line segments of a certain length are parallel to each 
other. This also means that all Duck figures of a certain size are equally oriented, or 
rotated 180°. 

Besides: 
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Grid 
Herman Haverkot shows that on which grid of parallelograms the Duck curve is 
based and how that grid changes with each step. Haverkot also gives formal proof 
that the Duck curve is plane-filling. 
 
Here are the grids of a number of steps drawn. 
 

     
 step 3 step 4 
 

     
 step 5 step 6 
 
The parallelograms have sides whose lengths have a ratio of . The short 
diagonal is the same length as the long side. 
With each step, the grid rotates over an angle  and the parallelograms are halved. 

Duck figure 
The Duck figure has a number 
of special properties.  
First of all, it can be seen on 
the right that this figure is 
made up of four isosceles 
triangles that are also uniform. 
The proportions between the 
sides of the triangles ,  and . 
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The axis of symmetry of the medium triangle is perpendicular to the middle of the 
long side of the large triangle; The same goes for the small red and medium triangle. 
The enclosed white triangle is congruent with the small red triangle. 
Because the sizes of the large, medium and small triangles have a ratio of ,  and 

, the short side of the large triangle is the same length as the long side of the 
medium triangle. In addition, the semi-long side of the large triangle is the same 
length as the short side of the medium-sized triangle. Moreover, these equally long 
stretches run parallel to each other. The same applies, of course, to the medium and 
small red triangle. 
 
Due to the special properties of the Duck figure, different sizes can be connected to 
each other in various ways. This gives all kinds of possibilities to construct 
tessellations. Below is an example with four formats. 
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Bird's nests 
Another possibility is to make a variant of the 5-Dragon. The 5-Dragon consists of 5 
line segments with a length of . Because of the symmetry, three line segments 
with length a and two with length b are now chosen. See figure below. 
 
For the dimension to be 2,: 

. 
We again choose the ratio k 
between a and b: . 
 
 
 
 
 
 
 
With this we express a and 
b in k: 

 
 

 

Applying the cosine rule in  gives: 
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We now fill in some values for k . 

 
With  we get an already known fractal, 
namely the 5-Dragon, of which we have 
already seen that it is plane-filling. 
 
 
 
 
 
 
 
 

     
 step 2 step 3 
 

 
With  we get: 

 

 

The coordinates of the vertices are 
respectively: , , 

, ,  
and . 
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Step 1 ziet er als hiernaast uit. 
 

     
 step 2 step 3 
 
At step 2 we see that the fractal touches itself. In the enclosed form at the top, you 
can see a bird with some imagination, and the parallelogram below is the nest. That's 
why I call these fractal Bird's Nests . 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
 

     
 step 4 step 5 
 

 
step 6 
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While the Duck curve consists of all similarly shaped figures, this fractal consists of 
two different figures. In step 2, these two different figures do have the same surface 
area. The sizes in those successive steps become smaller faster than with the Duck 
curve. The numbers of figures are also increasing faster. 
Across all steps, all line segments of a certain length are parallel to each other. This 
also means that all figures of a certain size are equally oriented or rotated 180°. 

Equal contours 
What is striking about step 9 of the Duck curve and step 6 of the Bird's Nest fractal, is 
that the contours are very similar. Let's take a closer look. 
 
The coordinates of the two vertices of step 1 of the Duck curve are:  and 

. And the coordinates of the four vertices of step 1 of the Bird's Nest 

fractal are: , ,  and . The first and the 
last are equal to each other! 
 
Below are steps 1 and 2 of the Duck curve and step 1 of the Bird's Nest fractal 
depicted again. The latter is actually a combination of the first two. The left and right 
line segments of step 1 and the middle three line segments of step 2 of the Duck 
curve can be seen in step 1 of the Bird's Nest fractal. 
 

 
 Duck curve, step 1 Duck curve, step 2 

 
Bird's Nest fractal, step 1 

 
What actually happens is that the longest line segment in step 1 of the Duck curve is 
replaced by that same step 1. This means that the Bird's Nest fractal is nothing more 
than a variant of the Duck curve. And that is why the contours of both fractals look 
more and more similar with further steps. 
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Variants of the Duck curve 
It has been shown above that a variant of the Duck curve can be made by replacing 
a line segment in step 1 with a step 1 of the Duck curve. The resulting fractal is again 
plane-filling, and the final contours and area of the new fractal are the same as those 
of the Duck curve. This idea can be taken further. 

Spirals 
By repeatedly replacing the middle line segment in step 1 with step 1 of the Duck 
curve, increasingly advanced spiral shapes appear. 
Here are three examples. 
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With seven line segments: 

     
 step 1 step 2 
 

     
 step 3 step 4 
 

  
step 5 
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With nine line segments: 

     
 step 1 step 2 
 

     
 step 3 step 4 
 

 
step 5 
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With eleven line segments: 

     
 step 1 step 2 
 

     
 step 3 step 4 
 
In principle, this can be implemented indefinitely. 

Other examples 
Can line segments other than the middle one also be replaced by a step 1 of the 
Duck curve? The answer is: yes, provided 
1. only a local longest line segment is replaced, and 
2. the replacement – outside the middle line segment – always takes place in 

duplicate, namely point symmetrical with respect to the center of the fractal. 
These two conditions mean that all adjacent line segments in step 1 differ from each 
other by a factor of . 
 
Below are two examples. 

With eleven line segments: 
The three longest line segments of the Bird's Nest fractal were replaced in step 1. 
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 step 1 step 2 
 

     
 step 3 step 4 
 

With seventeen line segments: 
The orange and yellow line segments of the above fractal were replaced in step 1. 

     
 step 1 step 2 
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 step 3 step 4 
 
Of course, there are an infinite number of variants in this way. 
 
 
A number of things stand out in all the above variants: 

• Over all variants and over all steps thereof, line segments of equal length are 
also parallel to each other. 

• In addition to the Duck figure, the bird and its nest (parallelogram), more and 
more different enclosed forms are emerging. 

• The final contours of all variants are the same as those of the Duck curve.  
• The lengths of the line segments in step 1 differ from each other by one or 

more factors . The corresponding colored subsurfaces in the final fractal 
differ from each other by the same number of factors 2. 
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Titanic 
In addition to the Duck curve and its many variants, there is another series of fractals, 
all of which are not tied to a triangular or square grid. 

Titanic2 
After the Duck curve with 
three line segments in step 
1 and the Bird's Nest fractal 
with five line segments, we 
will now look at a fractal 
with seven line segments. 
Because of symmetry and 
simplicity of calculations, we 
choose the design on the 
right, with two different 
lengths a and b for the 
successive line segments. 
 
For the dimension to be 2, 

. 
We again choose the ratio k between a and b: . 
With this we express a and b in k: 

 
 

 

The cosine rule in  gives: 
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For  we get: 

 

 

The coordinates of the vertices are 
respectively: , , 

, , 

, , 

 and . 
Step 1 looks like the one on the 
right. 
 

     
 step 2 step 3 
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At step 2 we see that the fractal touches itself. In the enclosed form at the top, you 
can see a sinking Titanic with some imagination, two funnels of which are still visible. 
That's why I call this fractal Titanic2. 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
 

     
 step 4 step 5 
 
This fractal is substantially different from the Duck curve: the contours look different 
and this time the ratio between the lengths of the line segments is not , but . 
 
The shapes of the enclosed figures become more and more diverse and from step 4 
onwards enclosed figures arise that no longer have a surface area ratio  
compared to most other enclosed figures. This makes it impossible to calculate the 
final enclosed area with the help of counts, because it is not possible to predict what 
other shapes the enclosed figures will take when walking further. We will come back 
to this later. 

Titanic2 variant 
As with the Duck curve, we can see if we can make a variant of the Titanic2 fractal, 
which is also plane-filling. We replace the middle line segment of step 1 with the 
same step 1. 
In step 4 it can be seen that the contours of this fractal become the same as the 
contours of the Titanic2 fractal. The final enclosed surfaces will be equal to each 
other. 
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 step 1 step 2 
 

     
 step 3 step 4 
 
There are probably many more variants of the Titanic2 fractal to be found, in the 
same way as the Duck curve. The number of line segments in step 1 of the variants 
increases rapidly, because each replacement of a line segment gives six extra line 
segments. 
I will limit myself here to this one example. 

Titanic3 
We are now going to look at 
a fractal with eleven line 
segments. 
Because of symmetry and 
simplicity of calculations, we 
choose the design on the 
right, with two different 
lengths a and b for the 
successive line segments. 
 
For the dimension to be 2, 

. 
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We again choose the ratio k between a and b: . 
With this we express a and b in k: 

 
 

 

The cosine rule in  gives: 
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For  we get: 

 

 

The coordinates of the vertices are 
resp.: , , 

, , 

, , 

, , 

, ,  and . 
Step 1 looks like the one on the right. 
 

     
 step 2 step 3 
 
At step 2 we see that the fractal touches itself. In the enclosed form at the top, with 
some imagination, you can see a sinking Titanic, three funnels of which are still 
visible. That's why I call this fractal Titanic3. 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
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step 4 

 
This fractal is substantially different from the Duck curve and the Titanic2 fractal: the 
contours look different and this time the ratio between the lengths of the line 
segments is . 

Titanic4 
We are now going to look at a fractal with fifteen line segments. 
Because of symmetry and 
simplicity of calculations, we 
choose the design on the 
right, with two different 
lengths a and b for the 
successive line segments. 
 
For the dimension to be 2, 

. 
We again choose the ratio k 
between a and b: . 
With this we express a and 
b in k: 
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The cosine rule in  gives: 

 

 

 

 
For  we get: 

 

 

The coordinates of the vertices are 
resp.: , , 

, , 

, , 

, , , , , 

, , ,  and . 
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Step 1 looks like the one on the right.  
 

     
 step 2 step 3 
 
At step 2 we see that the fractal touches itself. In the enclosed form at the top, you 
can see a sinking Titanic with some imagination, with four funnels visible. That's why 
I call this fractal Titanic4. 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
 

 
step 4 

 
This fractal is substantially different from the Duck curve and the other Titanic 
fractals: the contours look different and this time the ratio between the lengths of the 
line segments is . 
Similarly, Titanic5, Titanic6, etc. could also be fractalized. Apart from the fact that the 
Titanic itself had no more than four funnels, the pictures of these fractals are 
becoming less and less interesting (brick walls?). So, I'll leave it at that. 
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Enclosed area 
I do want to look at the enclosed surface of the Titanic fractals. As noted earlier, it is 
impossible to predict what new forms the enclosed figures will take with further steps. 
This makes it impossible to calculate the enclosed area with the help of counts of 
enclosed figures. That is why we do this via a different method. 
 
From the Titanic2, Titanic3 and Titanic4 we take a step 5 or 4 and draw two lines 
from the highest point of step 1 to  and to . Together with the x-axis, 
triangles are created that roughly correspond to the shape of the fractal above the x-
axis. 
On the right side we see 2, 3 and 4 pieces of the fractal falling outside the triangle, 
and also 2, 3 and 4 white pieces inside the triangle. If we were to let the steps go to 
infinity, the areas of the areas inside and outside the triangle would be exactly the 
same size. For the area determination we can use the straight line of the triangle on 
the right. 
Something similar can be seen on the left side of the triangle. However, there 
remains an area outside the triangle. So we have to add the area of that area to the 
area of the triangle. 
Now we see that such an area outside the triangle is exactly half of a smaller copy of 
the entire fractal. We can also approximate the area of it with a triangle, but then we 
miss a small piece, etc. We will first work out this idea for the Titanic2. 
The base of the grand triangle is 1. The base of the small triangle is . The area of 
the small triangle is therefore smaller by a factor of 16. The even smaller triangle on 
top of that is a factor of 16 smaller, and so on. This gives a geometric sequence: 

. If the number of steps n goes to infinity, the sum becomes: 

. This means that the area of the large triangle is multiplied by a 

factor  to get the final enclosed area of the fractal above the x-axis. Multiplication 
by 2 gives the final enclosed area of the entire fractal. 
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Titanic number 
Now more generally: we introduce the t as Titanic number. With Titanic2, of course, 

, with Titanic3 , etc. 
The number of lines in step 1 of the fractal is then  and the ratio between the 
lengths of the line segments is . 
 

The factor by which the area of the triangle must be multiplied is: . 

The area of the triangle is: . The base is 1 and for the triangle under the x-axis 
we multiply by 2. This means that the area of the two triangles (parallelogram) is 
equal to the height of the triangle and therefore equal to the y-coordinate of the 
highest point in step 1. 

• In the case of Titanic2, the calculated x-coordinate of point B was: . 

For the highest point, this value must be multiplied by . 
• In the case of Titanic3, the calculated x-coordinate of point B was: . 

For the highest point, this value must be multiplied by . 
• In the case of Titanic4, the calculated x-coordinate of point B was: . 

For the highest point, this value must be multiplied by . 

From this, the y-coordinate for all Titanic fractals can be derived: . 

This is also the formula for the area of the two triangles together. 
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All told, the formula for the final enclosed area of each Titanic fractal becomes: 

 
 
For the above three Titanic fractals, this yields the following values: 

 

 

 

 
Because the Duck curve is constructed in exactly the same way, the same applies to 
the Duck curve: . The above surface formula also appears to be useful for the 
Duck curve: 

 
 
To be sure, let's take a look at the Duck curve with the triangle drawn by the highest 
point of step 1. On the right side, we see that the areas outside the triangle fit exactly 
into the white areas within the triangle. On the left side, exactly half of a scaled-down 
copy of the entire fractal protrudes outside the triangle. This can be added to the area 
of the triangle in the same way as with the Titanic fractals described above. 

 
 
This confirms that the area formula also applies to the Duck curve. 
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Peaks 
The Duck curve can be extended in another way: instead of three line segments, we 
take five, seven or nine line segments, as shown below. The line segments a are 
parallel and of equal length; the line segments b are also parallel and of equal length. 

Twin Peaks 
We start with five line 
segments. Because of 
symmetry, the middle line 
segment a is attached to 
the point in the middle 

. 
 
For the dimension to be 2, 

. 
We again choose the ratio k 
between a and b: . 
With this we express a and 
b in k: 

 

 

 

The cosine rule in  gives: 
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For  we get: 

 

 

 

 

 
The coordinates of the 
vertices are resp.: , 

, , 

,  and 
. 

Step 1 looks like the one on 
the right. 
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 step 2 step 3 
 
In step 3 we see that the fractal touches itself. In the enclosed form at the top, you 
can see a mountain landscape with some imagination, with two mountain peaks on 
the right and a conifer tree on the left. That's why I call this fractal Twin Peaks (after 
the 1990 TV series of the same name). 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
 

     
 step 4 step 5 
 

     
 step 6 step 7 

Twin Peaks variant 
As with the Duck curve, we can see if we can make a variant of the Twin Peaks 
fractal, which is also plane-filling. We replace the longest two line segments from 
step 1 with the same step 1. 
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In step 4 it can be seen that the contours of this fractal become the same as the 
contours of the Twin Peaks fractal. The final enclosed surfaces will be equal to each 
other. 

     
 step 1 step 2 
 

     
 step 3 step 4 
 
There are probably many more variants of the Twin Peaks fractal to be found, in the 
same way as with the Duck curve. The number of line segments in step 1 of the 
variants increases rapidly, because each replacement of a line segment gives four 
extra line segments. 
I will limit myself here to this one example. 

Triplet Peaks 
We start with seven line segments. Because of symmetry, the middle line segment b 
is attached to the point in 
the middle . 
 
For the dimension to be 2, 

. 
We again choose the ratio k 
between a and b: . 
With this we express a and 
b in k: 
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The cosine rule in  gives: 

 

 

 

 

For  we get: 
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The coordinates of the 
vertices are resp.: , 

, 

, , 

, ,  
and . 
Step 1 looks like the one on 
the right. 
 

     
 step 2 step 3 
 
In step 3 we see that the fractal touches itself. In the enclosed form at the top, you 
can see a mountain landscape with some imagination, with three mountain peaks on 
the right and a coniferous tree on the left. That's why I call these fractal Triplet 
Peaks. 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
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 step 4 step 5 

Quads Peaks 
We start with nine line segments. Because of symmetry, the middle line segment a is  
attached to the point in the 
middle . 
 
For the dimension to be 2, 

. 
 
We again choose the ratio k 
between a and b: . 
With this we express a and 
b in k: 
 

 

 

 

The cosine rule in  gives: 
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For  we get: 

 

 

 

 

 
The coordinates of the 
vertices are resp.: , 

, , 

, , 

, , 

,  and . 
Step 1 looks like the one on the right. 
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 step 2 step 3 
 
In step 3 we see that the fractal touches itself. In the enclosed form at the top, you 
can see a mountain landscape with some imagination, with four mountain peaks on 
the right and a coniferous tree on the left (unfortunately hardly visible anymore...). 
That's why I call these fractal Quads Peaks. 
The dimension of this fractal is 2 and there are no intersecting or overlapping line 
segments. The fractal is therefore plane-filling. 
 

     
 step 4 step 5 
 
This fractal doesn't get any prettier. It is the last in this series, because a comparable 
fractal with five mountain peaks can no longer be constructed. 

Peaks figuren 
The enclosed figures of the Duck Curve, Twin Peaks, Triplet Peaks and Quads 
Peaks look like this, with the coordinates of the vertices: 
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All four of these figures can be divided into triangles in a similar way: 
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Now two things stand out: 

 
1. The triangle FGE of the Duck figure and triangle AFG of the Triplet Peaks are 

exactly the same size and have the same shape. They are isosceles triangles 
with sides with length  and . In the Duck figure, the outer angles are equal 

to the base angle of this isosceles triangle and in the Triplet Peaks, the outer 
angles are equal to the apex angle. 

 
2. At the Twin Peaks, AD and ED are both  long. AF and FE are both  long. 

That means that AFD and EFD both are 90º. FD is  long. 

This figure therefore consists of all right triangles, in the proportion ,  and 
. 

Enclosed area 
As with the Titanic fractals, I want to look at the enclosed surface of the Peaks 
fractals. I follow the same method. 
 
From the Twin Peaks we take step 7 and draw two lines from the highest point of 
step 1 to  and to . Together with the x-axis, this creates a triangle that 
roughly corresponds to the shape of the fractal above the x-axis. 
On the right side we see two pieces of the fractal falling outside the triangle, and also 
two white pieces inside the triangle. If we were to let the steps go to infinity, the areas 
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of the areas inside and outside the triangle would be exactly the same size. For the 
area determination we can use the straight line of the triangle on the right. 
 

 
 
On the left side we see that half of a reduced fractal remains outside the triangle. 
Here we have to make another correction. 
The height of the triangle is . The area of the triangle is therefore 

. The length of the left line segment of the triangle is , so the 

area of the reduced fractal is a factor  smaller. The correction is: . 

After another multiplication by 2 for the part below the x-axis, the area of the Twin 
Peaks becomes after an infinite number of steps:  . 
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For the Triplet Peaks, the calculation of the area after an infinite number of steps: 

 . 

 

 
 
For the Quads Peaks, the calculation of the area after an infinite number of steps: 

 . 
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Conclusion 
These were my research questions: 
1. Are there also plane-filling fractals that are not tied to a triangular or square 

grid? 
2. If so, what are the properties of such fractals? 
 
I can answer the first question with a resounding "yes". Based on Mandelbrot's 
suggestion on how to calculate the dimension of fractals that have line segments of 
unequal length in step 1, I reversed this method and fixed the dimension at 2. That is 
one of the conditions for a plane-filling fractal: its dimension is 2. The other condition 
is symmetry. In this way I found the Duck curve and it also turned out to contain an 
infinite number of variants. 
In addition, two other series of other fractals have been found in a similar way: the 
Titanic fractals and the Peaks fractals. 
 
Properties of the Duck curve and its variants are: 

• The ratio between the lengths of the line segments is . 
• For all variants and for all steps, line segments of equal length are also 

parallel to each other. 
• In addition to the Duck figure, the bird and its nest (parallelogram), more and 

more different enclosed forms are emerging. 
• The final contours and enclosed area of all variants are the same as those of 

the Duck curve. 
• The lengths of the line segments in step 1 differ by one or more factors  

from each other. The corresponding colored subsurfaces in the final fractal 
differ from each other by the same number of factors 2. 

 
The Titanic fractals form a series of new fractals. Initially, I called them Titanic2, 
Titanic3 and Titanic4, with the number referring to the number of "funnels" on the 
sinking ship. Afterwards I defined this number as the Titanic number t, which can be 
used to describe a number of properties for all Titanic fractals. For the Duck curve, 
the following applies . 
Features of the Titanic fractals series are: 

• The number of line segments in step 1 of the fractal is . 
• The ratio between the lengths of the line segments is . 
• Over all steps within a fractal, line segments of equal length are also parallel 

to each other. 
• More different enclosed forms are emerging. 
• The enclosed surface of the fractal if this fractal were to be carried through to 

infinity is . 
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• The lengths of the line segments in step 1 differ by a factor  from each 
other. The corresponding colored subsurfaces in the final fractal differ by a 
factor  from each other. 

 
The Peaks fractals form three new fractals. I have called them Twin Peaks, Triplet 
Peaks and Quads Peaks. You could say that the Duck curve also fits in this series, 
with a mountain top on the right and a coniferous tree on the left. 
Characteristics of the Peaks fractals are: 

• The enclosed figures are all uniform per fractal. 
• The ratio between the lengths of the line segments is resp. ,  and 

. 
• Over all steps within a fractal, line segments of equal length are also parallel 

to each other. 
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Reflection 
In this study, the discovery of the Duck curve and its variants was discussed. Only 
one variant of the Titanic2 fractal has been described; there are probably many more. 
There are probably also many variants of the Titanic3 and Titanic4 fractals. 
In addition, Titanic fractals and their variants can be found with a . 
Of the three Peaks fractals, only a variant has been described for the Twin Peaks. 
Perhaps there are many more variants to be found there as well. 
 
It cannot be ruled out that there are more plane-filling fractals that are not tied to a 
triangular or square grid. It may be the subject of further research to find it. The 
methods described in this report can be helpful in this regard. 
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Epilogue 
What started with an attempt to generate fractals with the computer program 
GeoGebra, has culminated in a study on fractals that I have not come across in 
previous research on the subject. It has regularly given me a kick, about working with 
GeoGebra, about the mathematical discoveries I made and about the beautiful 
visualizations I made. 
Many of those visualizations are in this report; many others don't either. This 
concerns visualizations that do not relate to the subject of this report, but also 
animations that are related to this topic, but for which this paper is not the right 
medium. 
 
Pictures say more than a thousand words. And that applies even more to moving 
pictures, or animations. Last year I participated in an art route in my residential area. 
In addition to works of art derived from mathematics – a copy of which is included in 
this report – I have shown fractals on canvas and also animations with fractals on a 
number of computer screens. The latter in particular were very much in the spotlight. 
Regularity and symmetry appeal to people, even without awareness of the 
mathematics behind it. 
 
I started this project out of my curiosity about whether GeoGebra can be used to 
make images of fractals. I had already worked a lot with GeoGebra from my work as 
a mathematics teacher and I found it a pleasant program to work with. But with this 
project I ran into the limits of the program. 
First of all, there was the limited length of the scripts that could be entered. That was 
difficult, but it also forced me to write more compact scripts. Worse was the limited 
length of lists of (vertice) points: a maximum of about 8000 points fit in such a list. If 
you make the list longer, GeoGebra does not give an error message, but it suddenly 
becomes very slow... That requires some tricks to work around that. 
In hindsight, I might have been better off using a programming language to make 
images of fractals. 
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